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Abstract

To investigate the feasibility of the use of foams with an interconnected spherical pore structure in heat transfer applications, models
for heat transfer and pressure drop for this type of porous materials are developed. Numerical simulations are carried out for laminar
periodic, thermo-fluid flow in an idealized pore geometry of foams with a wide range of geometry parameters. Semi-heuristic models for
pressure drop and heat transfer are developed from the results of simulations. The model developed for pressure drop is based on Car-
man-Kozeny theory. An Ergun-like quadratic extension is added to the model for higher Reynolds number regimes. The variation of the
resulting Kozeny constant is consistent with that reported in literature for other types of pore geometry. Presence of a cubic behavior of
pressure drop in terms of velocity in the weak inertia flow regime was explored and observed, which was in agreement with the theory of
weak inertia flow in existing literature. A heat transfer model is developed using parametric study on the data from the simulations. The

proposed models can be used as outlines for future experimental studies.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many porous materials have an open, interconnected
void structure that makes the internal surface area of the
media accessible to fluid. Such materials include high-
porosity reticulated metal foams that are formed by cast-
ing, and more moderate-porosity graphitic foams that are
formed by a process of foaming and heat treatment of a
carbon precursor (Klett et al., 2000; Gallego and Klett,
2003). Compared to reticulated metal foams, graphitic
foams have a higher internal surface area to volume ratio
and a higher solid-phase conductivity, which make them
a suitable candidate for convective heat transfer applica-
tions. The high solid-phase conductivity of graphitic foam
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leads to a high effective (stagnant) conductivity (k, = 40—
160 W/m K) which enables the heat to penetrate deeply
into the solid structure of the foam thereby increasing the
possibility of thermal non-equilibrium condition in the
fluid-solid interaction and the convective heat transfer.
With increasing interest in using graphitic foams in convec-
tive heat transfer applications, see for example Tadrist
et al. (2004) and Yu et al. (2006a), it is of interest to
develop flow and heat transfer models for this type of foam
structure to further investigate the feasibility of
implementation.

Starting with Darcy’s experiment (Darcy, 1856) and his
introduction of permeability, the flow and heat transfer
inside porous media has been extensively studied. A thor-
ough review of studies in this area can be found in Dullien
(1979) and Kaviany (1999). In most of the studies, how-
ever, it is assumed that a packed bed of spherical particles
is the common microscopic structure of porous media. The
microscopic structure of foams is completely different than
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that of a packed bed of spherical particles and varies signif-
icantly with the porosity and pore size. At the higher end of
porosity and pore size, reticulated foams such as aluminum
foams with a porosity of €>0.9 and a pore size of
D, ~ O(mm) are modeled accurately as a network of inter-
connected fibers or ligaments; see for example Fourie and
Du Plessis (2002). Based on such geometry models, studies
on the hydraulic and thermal characteristics of reticulated
foams have been carried out by, for example, Calmidi
and Mahajan (1999, 2000) and Boomsma et al. (2003).
On the other side of the spectrum, the microscopic struc-
ture of graphitic foam with a more moderate porosity of
€ =10.7-0.9 and pore size of D, ~ O(um) is characterized
as a network of interconnected spherical pore structures.
A geometry model for the internal structure of graphitic
foam has been proposed by Yu et al. (2006b). The model
is based on interconnected sphere-centered cubes, where
the interconnected spheres represent the void phase of the
porous media. Combining elements of this idealized geom-
etry with experiments, Straatman et al. (2006) conducted a
study of the heat transfer and hydraulic losses associated
with graphitic foam. No detailed information at the pore-
level was presented.

To properly develop hydraulic and thermal models for
foams with moderate porosity such as Graphitic Foam
and Carbon Foam, a study of the pore-level thermo-fluid
flow inside the interconnected pores of spherical-void-
phase (SVP) foams is necessary. Experimental studies of
the flow structure at that level would suffer from lack of
instrumentation, leading to poor measurement resolution.
Thus, semi-heuristic hydraulic and thermal models based
on the results of direct numerical simulations of the flow
and energy fields inside an idealized representation of the
SVP foam micro-structure is a proper start. A solution of
this type will indicate the general characteristics of the real
flow, but will not necessarily replicate accurately the phys-
ics of the real flow field since in this ideal case, the foam
structure is assumed to be perfectly periodic and homoge-
neous. The main purpose of these models is to recognize
the importance of each parameter on the governing behav-
ior of the fluid flow and heat transfer at the pore level. Such
models can be used to guide experimental investigations at
the macroscopic scale.

The hydraulic behavior in the idealized cell structure is
characterized herein using conventional relations devel-
oped for porous media. These relations are categorized as
permeability models, which model creeping flow behavior
using Darcy’s law, and extended models, which model
strong inertia flow by adding non-linear extensions to per-
meability models. Among permeability models, the
hydraulic radius model known as Carman—Kozeny model
(Dullien, 1979) provides the best general relation for esti-
mating pressure drop across a porous media with moderate
porosity. Since this model was primarily developed for
packed beds of spherical particles, it is necessary to re-visit
and modify the model for foams with a spherical intercon-
nected pore structure. For flow with high Reynolds num-

ber, Forchheimer (1901) suggested that a quadratic
extension to the Darcy’s law can approximately model
the pressure behavior. Ergun (1952) proposed a quadratic
extension to the Carman-Kozeny model, based on the
analogy of the inertial forces compared to the viscous
forces. This extension must also be re-visited for the geom-
etry of interest herein.

The cubic behavior of pressure drop in the weak inertia
flow regime in terms of velocity was experimentally recog-
nized by Muskat (1946) and was mathematically shown by
Mei and Auriault (1991). Firdaouss et al. (1997) proved
that some legendary experiments including that of Darcy
and Forchheimer qualitatively follow the cubic model pro-
posed by Mei et al. for weak inertia flows. The cubic behav-
ior of pressure drop in the weak inertia flow regime has also
been observed and verified by others, see for example Rojas
and Koplik (1998), Kim et al. (2001), Spena and Vacca
(2001) and Fourar et al. (2004) among others. However,
a quadratic extension to a permeability model is still a good
engineering approximation for both weak and strong iner-
tia flow. Therefore, while verifying the presence of a cubic
pressure drop in the weak inertia flow regime is considered
in this work, the proposed model will be bound to an
Ergun-like quadratic extension.

By using the concept of periodicity, Karimian and Stra-
atman (2007) adopted the logarithmic law (Incropera and
DeWitt, 2002) to calculate the pore-level Nusselt number
for a periodic cell. A convective heat transfer model is pro-
posed herein based on computed pore-level Nusselt num-
bers of a similar form.

In the present work, suitable general forms of engineer-
ing models for characterizing the hydraulic and thermal
behavior of flow in foams with a spherical interconnected
pore structure are proposed based on the results of direct
numerical simulation of unidirectional thermo-fluid flow
through an idealized unit-cube cell. The proposed general
forms can be calibrated using experimental investigations.
Though the results of the DNS calculations include full
details of the pore-level flow structure, the aim of this work
is on the development of hydraulic and thermal models and
thus the main focus is on the overall pore-level pressure
drop and heat transfer provided by the DNS calculations.
The representative geometry and the computational
domain are defined in the next section. In Section 3, the
governing equations, the boundary conditions and the
numerical method are given. The numerical simulation
setup and the grid convergence study are described in Sec-
tion 4. The last section describes the development of the
hydraulic and thermal models.

2. Computational domain

In this study, we are interested in the flow and heat
transfer inside a generic section of a block of foam. Since
a foam would typically be comprised of hundreds of cells
in each direction, it is suitable to assume that the flow in
a generic section inside the foam is periodic in nature and
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as such, only a representative portion of domain requires
modeling.

Fig. 1 shows electron micrographs of a typical graphitic
foam specimen developed at Oak Ridge National Labora-
tory (ORNL) (Klett et al., 2000). To characterize the inter-
nal structure of graphitic foam, Yu et al. (2006b) proposed
a unit-cube geometry model. The model is based on inter-
connected sphere-centered cubes, called unit-cube cells or
simply cells, where the interconnected spheres represent
the void phase of the porous media. Fig. 2a shows a
three-dimensional CAD image of a unit-cube cell. It is
assumed that this idealized geometry is the building block
of the porous media (as shown in Fig. 2b). In this geometry
model, the porous media is assumed homogenous with a
periodic internal geometry. A unit-cube cell in Yu et al.
(2006b) is defined by the porosity, € (defined as % void
phase), of the represented graphitic foam and the pore
diameter D,,. Fig. 3 shows the detailed dimensions of the
unit-cube model. Here, D, is the pore diameter, H is the
cell size and D,, is the interconnected pore-window diame-
ter. The cell size H is determined as a function of porosity e
and pore diameter D,. The equation relating these three

factors can be obtained from the definition of porosity
(Yu et al., 2006b):

H\? 3n H 47
&) ~aa= @) e W
Eq. (1) indicates that
H
1=p, = f(e), 2)

where 7 is the cell ratio. Using the definition of # and the
unit-cube model formulations (Yu et al., 2006b), the
pore-window diameter D,, can be calculated using:

Dy = /1 - x D,. (3)

Egs. (2) and (3) show that for a given porosity, the cell size
and the pore-window diameter vary proportional to the
pore diameter. Therefore, the pore-level thermo-fluid flow
structure can be scaled using pore diameter or one of its
products, e.g. cell size or pore-window diameter, as a
pore-level length-scale and hence all dimensionless quanti-
ties are solely functions of porosity. Details of validation
can be found in Karimian (2006).

Fig. 1. Klett et al. (2000): (a) Electromicrograph of the graphitic foam surface; (b) Electron micrograph of the graphitic foam surface of a single pore.
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Fig. 2. CAD images showing the unit-cube model (Yu et al., 2006b): (a) A single unit-cube with spherical void; (b) A pore block containing interconnected

pores.
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Fig. 3. Detailed dimensions of the unit cube geometry at a cross-section
cut at the center plane of the unit-cube cell.
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Fig. 4. Computational domain for an idealized SVP foam with € = 0.80.

Using the unit-cube model and by varying the porosity,
computational domains for simulating different configura-
tions of spherical-void-phase materials can be generated.
The double-periodic cell geometry formulation of Karimian
and Straatman (2007) and El Soukkary and Straatman
(2003) is used to generate the computational domain. This
formulation requires a computational domain comprised
of two consecutive periodic cells. Hence, the void phase of
two consecutive, interconnected cells is the geometry of
interest. Due to the presence of a fully developed steady,
laminar flow field with a unidirectional main stream in the
X-direction, the computational domain can be reduced to
a quarter of the geometric domain without compromising
accuracy of the results. Fig. 4 shows an outline of the com-
putational domain for an idealized SVP foam cell with
porosity of € = 0.80. The pore windows normal to X-direc-
tion are the periodic boundaries.

3. Governing equations and numerical method setup
3.1. Governing equations

Consider an arbitrary fixed control volume Q C R?, of
volume 7 and a piecewise smooth boundary 002, with unit

normal surface vector 7 pointing outwards, occupied by an
incompressible, Newtonian fluid. The integral form of the
conservation equations for mass, momentum and energy
is given by

/pﬁ-fzdszo, (4)
oQ
/pa,r?dr/+/ fl-(pﬁ)ds—/ - (uVV)ds

Q 0Q 0Q

:—/ PidsS, (5)

0Q
/pa,TdV+/ fq-(pﬁr)dS—/ i - <£VT)dS:0,
Q 0Q 0Q Cp
(6)

where p is the density, u is the viscosity, k is the heat diffu-
sion coefficient (conductivity), C, is the specific heat, p is
the relative pressure, V is the velocity vector, T'is the abso-
lute temperature, dS is the surface differential and dV'is the
volume differential.

3.2. Discretization method

The parallel code (ParTISUN) developed by Karimian
and Straatman (2006) is used to discretize and solve Egs.
(4)—(6) using an implicit, coupled, unstructured finite-vol-
ume method. A single-program-multiple-data (SPMD)
parallelization model was implemented in the code within
the PETSc framework (Balay et al., 2004) to exploit the
maximum capability of a cluster of distributed-memory
machines. An inexact Jacobian Newton-Krylov (iJNK)
method was used in conjunction with the non-linear itera-
tions to accelerate the non-linear convergence in each time-
step. The convection term is implicitly modeled using a
first-order upstream difference scheme (UDS) and explicitly
corrected to higher-order using a deferred-correction tech-
nique (Kholsa and Rubin, 1974). In this work, a second-
order central difference scheme is selected as a higher-order
scheme. However, there is no limit in using other higher-
order schemes. The details of the discretization method,
parallel implementation and iIJNK technique may be found
in Karimian and Straatman (2006) and are omitted here for
brevity.

3.3. Boundary conditions

All boundary conditions are imposed implicitly (Kari-
mian and Straatman, 2006). A no-slip boundary condition
is applied at all walls, i.e, ¥ = 0 and pressure is extrapo-
lated from inside the domain. In the presence of a solid
phase with high conductivity, which is the case in GF,
the variation of the wall temperature for two consecutive
cells is essentially negligible. Two different length-scales
can, therefore, be assumed for the macroscopic solid tem-
perature gradient and the pore-level convective heat trans-
fer. In this case, the length-scale associated with the solid
temperature gradient is much larger than that associated
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with heat convection mechanism. Of course, when integrat-
ing the final convection model into a macroscopic calcula-
tion, the pore-level Nusselt number should be considered as
a local Nusselt number. Also, in the cross-stream direction,
correction models similar to that implemented by using the
fin-efficiency analogy can be used to increase the accuracy
of macroscopic calculations, see, for example, (Straatman
et al., 2007). Therefore, it is reasonable to assume herein
a constant wall-temperature condition at the fluid—solid
interface of the computational domain.

Symmetry boundary conditions are imposed at the sym-
metry planes (see Section 2):

{SZ=0, v=0,2=0, L=0, atY-symmetry plane

> om0 om

ou __ v __ _ or __
w_(, =0, w=0,L=0,

on

at Z-symmetry plane,

(7)

where V = {u,v,w}. Pressure is extrapolated from the in-
side of the domain at all symmetry planes.

A fully developed flow and temperature field is assumed.
Therefore, periodic boundary conditions are imposed at
the inlet and outlet of the domain. According to the prob-
lem of interest, i.e. measurement of pressure drop as a func-
tion of mass flow rate, it is desired to specify mass flow rate
as a primary inlet condition. The mass flow specified peri-
odic boundary condition proposed by El Soukkary and
Straatman (2003) that is based on a double-periodic cell
geometry configuration is implemented herein. The mass
flow rate is specified at the periodic boundaries. The bulk
velocity at the periodic boundaries Uy, is determined by

Ap dir?

Upin =—Vest = 57—
VR N

on

Vexta (8)

where Ve = €X Vi 1s the extrinsic velocity and Vi, is
determined from Eq. (9) by setting the pore-level Reynolds
number. Here, Ay, is the blockage area, A, is the pore-win-
dow area and # is the cell ratio (see Eq. 2). The fully devel-
oped temperature field does not periodically repeat in each
cell. However, an isothermal wall boundary condition, in
addition to a fully developed flow, imply periodic behavior
in the thermal process. This periodic behavior is the basis
of a thermal periodic boundary condition proposed by
Karimian and Straatman (2007) that is implemented in this
work. Implementation details of the periodic boundary
conditions can be found in Karimian and Straatman
(2007).

4. The computations

Due to the number and size of the simulations required
to develop hydraulic and thermal models, a correct strategy
in defining the simulations can save a huge amount of time
and effort. Three parameters are varied for each simulation
to cover a wide range of idealized thermo-fluid flow
regimes and geometries. These three parameters are: Pra-
ndtl number, Pr, which characterizes the fluid type, pore-
level Reynolds number, Rep, which characterizes the flow

regime, and porosity, ¢, which characterizes the internal
geometry (see Section 2). Moreover, grid density and the
convergence criteria are influential in the accuracy of
results and in the computational cost. In the following, a
strategy for the simulation is described in terms of flow
regime and fluid type, convergence criteria, grid density
and pore-structure range.

It is worth mentioning here that all simulations, includ-
ing the primary simulations discussed in this section and
the main simulations for developing the models, were per-
formed using 16 processors of a distributed-memory cluster
of 48 Compaq Alpha processors with a processor speed of
533 MHz and a memory of 1 GB per processor. This clus-
ter was provided by Shared Hierarchical Academic
Research Computing Network (SHARCNET: www.sharcnet.
ca).

4.1. Flow regimes

There are various definitions of the pore-level Reynolds
number available in the literature that are used to describe
the flow regimes in porous media. This is mainly because of
the variety of the length-scales that can be used in the def-
inition of Reynolds number. These include: particle diame-
ter, equivalent particle diameter, square root of
permeability, pore diameter, fiber thickness etc. In fact,
because of the variety of microscopic structures for differ-
ent porous media, there is no way to escape this variation
in length-scales. However, four distinct flow regimes are
commonly defined in literature in terms of pore-level Rey-
nolds number: Darcy or creeping flow, inertial flow,
unsteady laminar flow and chaotic flow regimes. The flow
regimes studied in this work are limited to those below
unsteady laminar flow. Although there is still a vague def-
inition of pore-level Reynolds number, specifically for this
type of geometry, the initial simulations showed that by
defining Reynolds number as

VineD
ReD = 7'0 tp s (9)
u

where Vj, is the intrinsic velocity or average pore velocity,
a consistent upper limit of Rep = 1 for the Darcy flow re-
gime can be observed in a wide range of pore structures.
Therefore, pore diameter is selected as a primitive length-
scale hereafter and subscript D for a dimensionless quan-
tity indicates that the pore diameter D, is the length-scale
in that quantity. As stated before, the limits of Reynolds
number at which the flow regimes change vary based on
the length-scale and velocity scale used in the formulation
of Reynolds number. Hence, it is difficult to select a maxi-
mum limit of Reynolds number for the steady laminar flow
regime from literature, due to differences in pore structure
and length-scale. However, in an experiment performed by
Dybbs and Edwards (1984) on flow through packed beds of
spheres and packed beds of cylindrical rods, the same range
of Reynolds number is observed for Darcy flow, i.e.
Re;=1 when Reynolds number is defined as Re; =
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piiyd /1, where i, is the average pore velocity and d is an
average characteristic length-scale for the pores. Based on
their experiment, the Reynolds number at which unsteady
laminar flow starts to form is Re; = 150. This limit is re-
ported by others for other type of porous media, see for
example Pedras and de Lemos (2001). In recent experi-
ments, the maximum practical rate of flow through SVP
foam achieved was Re;~ 50 (Straatman et al., 2006).
Based on all these facts, an upper limit of Rep = 120,
which is safely below any reported unsteady regime and
much higher than reported experimental results for SVP
foam (Straatman et al., 2006), is an appropriate stopping
point for the steady, laminar flow regime. Thus, as an ini-
tial target, a range of pore-level Reynolds numbers of
0.1 < Rep < 120 is selected for the simulations.

4.2. Convergence study

To achieve the same accuracy for mass and momentum
equations with the same maximum allowable non-linear
residual, each equation in the linear system is normalized
by its diagonal coefficient. Moreover, using this normaliza-
tion technique, once non-linear and steady-state conver-
gence criteria are selected, they can be consistently used
for simulations with different geometry parameters to
result in essentially the same accuracy. Primary studies
on the solution for thermo-fluid flow in the above-men-
tioned geometry with a range of non-linear and steady-
state convergence criteria showed that a maximum non-lin-
ear residual of ¢ = 10™#, with a maximum non-linear itera-
tion of ny. = 10 per time-step, and a maximum steady-
state residual of &g = 107> are deemed satisfactory and
no significant change in the results appear by using more
restrictive convergence criteria. For more information on
the definition of the convergence parameters, please refer
to Karimian and Straatman (2006).

4.3. Grid convergence study

A unit-cube model of idealized SVP foam with a poros-
ity of e = 0.80 (the average of the allowable porosity range)
was used to conduct a grid convergence study. Four grids
with different wall-grid size and number of control volumes
were generated inside the double-periodic cell geometry
described in Section 2. Table 1 summarizes the grid config-
urations, where A4, is the grid size near the walls. In all
cases the maximum-to-minimum edge size Ag"*j* does not
exceed 3. Fig. 5 shows an outline of Grid 3. Flows with
Reynolds numbers of Rep =40 and Rep = 100 were simu-
lated. Water at a bulk temperature of Ty ;, = 300 K enters
the flow field, while a constant wall temperature of
Tw =350 K is imposed. According to Table 2, which sum-
marizes the results of the grid convergence study, the
results of the computation for Grid 3 are independent of
the mesh size. In this table, A = (D, x AP)/(uUy ) is the
dimensionless pressure drop, Nup is the pore-level Nusselt
number that is computed for one unit-cube cell (Karimian

Table 1

Summary of the grids configuration, grid convergence study

Grid Grid 1 Grid 2 Grid 3 Grid 4
Ay 2 6 4 3

D, 350 730 350 50

No. of CV’s 11,000 26,816 84,960 187,207
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Fig. 5. An outline of Grid 3 with 84,960 control volumes and near-wall-
grid size of 4y, =4 pm.

Table 2
Nusselt number and pressure drop for different grids, grid convergence
study

RED

40 100

Grid Grid Grid Grid Grid Grid Grid Grid

1 2 3 4 1 2 3 4
A 39.6 40.3 41.0 41.5 47.1 48.0 48.3 48.7
AA 1.7%  1.7% 1.2% 1.9% <1L% <1.%
Nup  5.024 5.067 5.073 5.073 5385 5346 5301 5.281
ANup <1.% <1.% 0.0% <1% <1% <1.%

and Straatman, 2007), AA is the variation of the dimen-
sionless pressure drop with respect to that for the coarser
grid and ANup is the variation of the pore-level Nusselt
number with respect to that for the coarser grid. It is worth
mentioning here that the difference between the pressure
drop of the first cell and the second cell did not exceed
4% and the difference between the Nusselt number of two
consecutive cells was less than 1%.

Fig. 6 shows contours of independent flow and temper-
ature variables at a cross-section between two symmetry
planes for a flow with Rep = 100 on Grid 3. The size and
the shape of the contour lines in two consecutive cells are
essentially identical, which illustrates the achievement of
a fully developed, periodic flow field. There is no significant
disturbance in the contour lines crossing the outlet and
inlet of the computational domain. This can be seen more
clearly in Fig. 6b and d. The resemblance of the contour
lines crossing the domain inlet and outlet boundaries with
those crossing the mid-section proves that the outlet and
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Fig. 6. Contours for (a) pressure, (b) U-velocity, (c) V-velocity and (d)
temperature at a cross-section between two symmetry planes (45° from zx-
symmetry plane), Rep = 100, Grid 3.

inlet periodic boundaries are essentially transparent to the
flow and temperature field.

Based on the observations in grid convergence study,
simulations over a grid with wall-grid size of g—”;' = ;55 and
a smooth grid-size variation across the computational

domain with a maximum-to-minimum edge size ratio of
“ALV“:X < 3 is independent of the mesh size and hence this grid
configuration is selected for all subsequent computations.

4.4. Porosity range

The range of pore structures used in the simulations
must represent the range of pore structures available in
reality. According to the unit-cube geometry model (Yu
et al., 2006b), a rigid porous media with an interconnected
pore structure can be obtained over the range
0.53 < € < 0.96. However, a more practical limit of poros-
ity based on available SVP foams is about 0.75 < e < 0.90.
For a given fluid and Reynolds number, 4 simulations with
different porosities of ¢ =0.75, 0.80, 0.85 and 0.90 are
performed.

Combinations of the above-mentioned flow rates, fluid
types and porosities formed 168 separate simulations,
which resulted in a wide range of pressure drop and
pore-level Nusselt number Nup data. For a combination
of each geometry configuration and fluid, 14 simulations
with pore-level Reynolds numbers of Rep=0.1, 0.4, 0.7,
1.0, 4.0, 7.0, 10, 25, 40, 55, 70, 85,100 and 120 are per-
formed to cover the flow regimes considered. To correlate
the pore-level Nusselt number Nup with the Prandtl num-
ber Pr, simulations are also carried out for three different
Prandtl numbers of Pr=5.85 (water), Pr =3.45 (Freon-
12) and Pr = 0.706 (air). Results from this data set are used
in the following sections to develop hydraulic and thermal
models.

5. Semi-heuristic models
5.1. Hydraulic model

The hydraulic behavior of creeping flow through a gen-
eric porous media shows a linear relationship between pres-
sure drop and velocity. By defining the permeability, x, for
a homogeneous porous media, Darcy (1856) proposed the
following linear relation, known as Darcy’s law, for unidi-
rectional flow through a porous media with a thickness of

__:EVexh (10)

As the flow rate increases, a deviation from Darcy’s law ap-
pear in the behavior of the pressure drop in terms of veloc-
ity. This deviation indicates a change from a viscous
dominant (creeping) flow to an inertia dominant (strong
inertia) flow regime. To characterize the non-linear behav-
ior in the strong inertia regime, Forchheimer (1901) pro-
posed a second-order formula:
AP
—L—ZVextﬁL\prVgxw (11)

where f is non-Darcy flow coefficient.
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To relate the permeability xk and the non-Darcy flow
coefficient f§ to the pore-structure geometry, many analyti-
cal and semi-heuristic models have been proposed (Dullien,
1979; Kaviany, 1999). The Carman-Kozeny model (Dul-
lien, 1979), however, appears to be the most popular and
successful model to define the permeability as a function
of geometry for porous media with a moderate porosity.
The Carman-Kozeny model was initially developed for
creeping flow in a packed bed of spherical particles. In their
model, the pore geometry is assumed to be a conduit with
an extremely complicated shape but an averagely constant
area. However, regardless of this condition, both the model
and its basic concept have been used for modeling Darcy
flow through other pore structures. Using the concept of
hydraulic diameter, a Hagen—Poiseuille type equation was
solved for the permeability of a packed bed (Kaviany,
1999):

K__ ¢
d* 36kg(l —€)®

3
(12)

Here, d is the mean or equivalent particle diameter and kg
is the Kozeny constant. The Kozeny constant represents
the shape factor and the deviation of flow direction from
that in a duct and is approximated as 5 for packed beds
but varies strongly as a function of porosity for other inter-
nal structures, see for example Sahraoui and Kaviany
(1992) and Happel and Brenner (1986) among others.

To model the non-Darcy coefficient f, Ergun (1952)
extended Carman—Kozeny theory to the strong inertia flow
regime and, by comparing viscous forces against inertia
forces and defining a modified friction factor as

., AP d ¢é
TR "
and a modified Reynolds number as
/ pdVext 1
Re' = . 14
e T (14)

he found that an equation of the form:

A
!

f - Re/ + B7 (15)
fits the data over a wide range of Reynolds numbers. Here,
A is proportional to Kozeny constant kx and B is the ex-
tended Ergun coeflicient. The extended Ergun coefficient
is reported to be B=1.8-4.0 depending on the internal
structure and the porosity (Dybbs and Edwards, 1984).

Since the internal structure of a spherical-void-phase
porous media is significantly different with that of a packed
bed of spherical particles, the parameters governing the
permeability model of graphitic foam are presumably dif-
ferent with those governing the Carman-Kozeny model.
Therefore, Carman-Kozeny theory must be re-visited to
develop a suitable extended model for SVP foam.

In spite of a good engineering approximation provided
by a quadratic relation such as Darcy—Forchheimer equa-
tion (Eq. (11)) for steady laminar flow regime, it is experi-

mentally shown (Muskat, 1946) among others that in the
presence of a weak inertia flow (Re — 0), the pressure
behavior is cubic with respect to velocity. Muskat divided
the steady laminar flow regime into three zones: Darcy
zone, where Darcy’s law prevails, transition zone, where
weak inertia flow appears with quadratic behavior of pres-
sure gradient in terms of Reynolds number (cubic behavior
in terms of velocity) and linear deviation zone, where
strong inertia flow regime appears with linear behavior of
pressure gradient in terms of Reynolds number (quadratic
behavior in terms of velocity). Moreover, Mei and Auriault
(1991) solved the Navier-Stokes equations for weak inertia
flows using the concept of the theory of homogenization
and showed that the pressure drop in this zone varies qua-
dratically with velocity. Firdaouss et al. (1997) re-assessed
some legendary experiments including that of Darcy and
Forchheimer and proved that those experiments qualita-
tively follow the cubic model proposed by Mei et al. for
weak inertia flows. Moreover, Firdaouss et al. (1997) sug-
gested that “the Darcy zone and the transition zone
emphasized by Muskat merge into one unique zone, which
corresponds to the asymptotic behavior Re — 0.

In this section, Carman—Kozeny theory is followed to
recognize important geometry parameters characterizing
flow behavior in SVP foam for steady laminar flow regime.
Moreover, the presence of a weak inertia flow regime with
a cubic pressure behavior in this type of porous media is
explored, but not included in the engineering model.

5.1.1. Extended-permeability model

It is convenient to study the dimensionless form of the
equations. Taking the Darcy-Forchheimer relation as a
starting point and defining the normalized pressure drop as

Ip = — (%) X (MID/E“), (16)

Eq. (11) can be re-written in the dimensionless form of

1
HD__“\/Q“
D

e
where Rep is the pore-level Reynolds number (defined by
Eq. 9) and Kp is the normalized permeability based on pore
diameter and is defined as

ReD, (17)

K

Eq. (17) shows that the dimensionless form of a second-or-
der polynomial in terms of velocity is a linear equation in
terms of Reynolds number. Fig. 7 depicts the variation of
normalized pressure drop IIp with pore-level Reynolds
number Rep for the data from all the simulations. In this
figure, W indicates water, F indicates Freon-12 and A4 indi-
cates air. The data covers a wide range of Reynolds num-
bers and porosities. As can be seen, the overall shape of
the pressure diagram is similar for various porosities, which
indicates that a similar form of relation can model this
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Fig. 7. Normalized pressure drop vs. pore-level Reynolds number.

behavior for the range 0.75 < € < 0.90. Moreover, Fig. 7
shows that the first term of Eq. (17) can model the pressure
variation for Rep < 1. It is clear from Fig. 7 that the nor-
malized pressure drop ITp is independent of the fluid type,
as expected. Therefore, according to Eq. (17), the normal-
ized permeability Kp and the non-Darcy flow coefficient f
are solely functions of porosity €. Thus, it is of interest here-
in to find these two coefficients as functions of porosity.

Carman—Kozeny theory uses the analogy of fully devel-
oped flow in a duct. Assume that for creeping flow, a
Hagen—Poiseuille type equation can approximate the pres-
sure drop in terms of intrinsic velocity, that is to say

AP 16kou

2
L. D}

Vo, (19)

where L, is the average length of a path-line across a cell
(from inlet to outlet), ko is a shape factor, V, is the average
pore velocity, V}, = (L./H) X Vin, and Dy, is the hydraulic
diameter of a cell, Dy =4 x Vi/Ay. Here, Vi=eX H s
the void (or fluid) volume of a cell and the wetted surface
area is calculated using the following equation (Yu et al.,
2006b):

A =7(3n — 2)D12). (20)
Hence,
den?
Dy =————D,. 21
" aBn—-2)" 1)

Moreover, define the tortuosity ratio t = L,/H. Therefore,
Vo = (t/€) X Vex and thus
AP (ky?n) (3 — 2’

— = oD Vext (22)
p

or

Ip = —(kk”z’fj;l —2' ; (23)

where ky = kot” is the Kozeny constant. As mentioned ear-
lier, the Kozeny constant is not necessarily constant with
porosity, since the mean path length L, can vary consider-
ably with porosity even if the shape of the pore structure is
essentially similar for different porosities. It is now reason-
able to define a modified pressure drop as

s
¥Yp=———1IIp. 24
P Gn-2 Y
Therefore,

lpD:kKsz. (25)

An extended-permeability model can then be proposed by
adding an Ergun-like extension:

l[ID = kK7'E2 + E}R@D7 (26)

where E, is an Ergun-like coefficient.
To verify the proposed model, a linear curve of

l[/D = ATC2 + BR@D (27)
is fitted on the data presented in Fig. 7 and the coefficients
A and B are evaluated as functions of porosity. Fig. 8

shows the variation of the coefficients 4 and B with poros-
ity e. It can be shown that for a range of 0.75 < € < 0.90,

B = /1 —n? x B=Const. (28)
and B’ =~ 0.25. Therefore, by defining

A =(1-9*) x4, (29)
Eq. (27) can be re-written in the form of

=A'7* 4+ B x \/1 — ’Rep. (30)

Eqgs. (30) and (3) indicate that the pore-window diameter
D,, is a better choice as a length-scale characterizing the
pore-level flow dynamics. Hence, the pore-window diame-

¥p x (1 _'72)
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l A 1
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Fig. 8. Curve fitting coefficients 4 and B vs. porosity.
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ter D,, is selected as the pore-level length-scale and there-
fore, Eq. (30) becomes

Py = A'n* + B'Rey, (31)
where the pore-window Reynolds number, Reyw, can be
computed using Eq. (9) and by replacing D, with D,, and

P

(3n -2’
Here, the dimensionless pressure drop based on pore-win-
dow diameter, IIw, is calculated using Eq. (16) and by
replacing D, with D,,. Comparing Eq. (31) with Eq. (26),
one can define a modified Kozeny constant as ky = A4’
and a modified Ergun-like coefficient as £/ = B’ and thus:

M. (32)

w =

Fig. 9a shows the variation of the modified Kozeny con-
stant kj with porosity. The increasing trend of &y with
porosity is consistent with that found for other structures
Kaviany, 1999, p. 37. Fig. 9b shows the variation of the
non-Darcy modified pressure drop, Yw — ki n?, with the
pore-window Reynolds number Rew. This figure illustrates
that the modified pressure drop ¥ is the main character-
istic parameter of the flow and the proposed model can pre-
dict the data to a good approximation. The model predicts
the data from the simulation with less than 10% deviation.

The dimensionless form of the Darcy—Forchheimer rela-
tion based on the pore-window diameter can then be writ-
ten as

Kw VEKw

Here, the normalized permeability based on pore-window
diameter, Kw = K/D%v, is calculated using the relation:

631’]6

W= (35)
K m(3n — 2)°
and thus,
3,6
Lz — Lz (36)
DY ker(3n - 2)
The non-Darcy flow coefficient f§ is
3n—2

upekl
A comparison between the Carman-Kozeny model for
packed beds of spherical particles (Eq. (12)) and the mod-
ified Carman-Kozeny model for SVP foam (Eq. (36))
shows that not only the length-scale in two geometries
are different, the mean particle diameter d in the former
and the pore-window diameter Dy, in the latter, but also
the form of the equation for the model varies dramatically.
This is mainly because in SVP foam the internal surface
area is cut with six interconnected pore windows and thus
is geometrically different than the fluid—solid interface area
of a particle in a packed bed of spherical particles. There-
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Fig. 9. (a) Modified Kozeny constant K vs. porosity; (b) the non-Darcy
modified pressure drop vs. pore-window Reynolds number.

fore, whereas defining an equivalent particle diameter for
SVP foam, as proposed by Yu et al. (2006b), may provide
a good correlation for a range of porosity ¢, the modified
Carman—Kozeny model proposed herein by Eq. (36) is
more reasonable due to its mathematical basis.

It is noteworthy that the computed quantities of ky and
E! herein are for a foam with an idealized spherical-void
structure, and cannot therefore be applied to a real foam
without further calibration. However, the fact that the
modified pressure drop ¥w characterizes the hydraulic
behavior of the pore-level flow in SVP foam is clearly illus-
trated and this can be extended for use with an empirical
model.

5.1.2. Weak inertia flow
To explore the presence of a weak inertia zone with a
quadratic behavior of pressure drop in terms of pore-level
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Reynolds number, the following normalization procedure
suggested by Firdaouss et al. (1997) is performed on the
results for 0.1 < Rep < 10 (a potential weak inertia zone):

Rew

= 38

ReW,max ’ ( )
where x is the flow index and Rew max 18 the pore-window
Reynolds number corresponding to Rep = 10. Further-
more, a non-Darcy pressure index is defined by this proce-
dure as

qu — k;(TCZ

= 7/ .
lI/WAmax - k](nz

y (39)
Here, Yw.max 1s the modified pressure drop at Rew max-
Using this definition we have

y:a1x+a2x2+a3x3+-~-, (40)

where > _a; = 1. The size of the coefficients ¢; can be used as
a measure for determining the hydraulic behavior of the
flow. If the data are on the line y = x, the pressure behavior
will be linear in terms of pore-level Reynolds number and if
a, is not negligible, the behavior will be quadratic. Note
that, although Eq. (40) reveals the nature of the hydraulic
behavior, it cannot be used as a model, since the indices x
and y are normalized by Rewmax and Pwma — k72,
respectively.

Fig. 10 shows the pressure index y vs. the flow index x
for the data from the simulations. In this figure, all data
fit on one curve, which again shows that the modified pres-
sure drop ¥w characterizes the hydraulic behavior of the
pore-level flow for a range of 0.75 < e < 0.90. Moreover,
the shape of the curve shows that the hydraulic behavior
of the weak inertia flow is not linear. A curve fit process
reveals that the coefficient a, is the dominant coefficient,
regardless of the degree of polynomial. This shows qualita-
tively that a weak inertia flow regime with a quadratic
hydraulic behavior in terms of microscopic Reynolds num-

;
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Fig. 10. Pressure index y vs. flow index x.

ber as suggested by Mei and Auriault (1991) and Firdaouss
et al. (1997), among others, exists amid flow through a
spherical-void-phase porous media.

5.2. Convective heat transfer model

The accuracy of the calculation of the pore-level convec-
tive heat transfer depends highly on the presence of a non-
equilibrium thermal condition. This condition prevails
when the solid heat conduction rate is much higher than
the rate at which the interstitial heat transfer happens at
the fluid—solid interface. A considerable temperature differ-
ence between solid and fluid phase and a high flow Peclet
number are required to make a non-equilibrium thermal
condition. Therefore, the results for low flow Peclet num-
bers are not accurate. In fact, because of the uncertainty
associated with heat transfer measurements in low Peclet
number flows, there has been always a question in the
asymptotic thermal behavior of the flow in that region
(Kaviany, 1999, p. 404). The fact that a thermal non-equi-
librium condition is not valid makes the presence of con-
vective heat transfer questionable in this regime. The
least one can say is that the contribution of the molecular
heat diffusion in this zone is comparable to that of heat
convection. Therefore, the model developed herein is based
on the results of the simulations for flow with high Peclet
numbers (Pe > 1).

The cell-based convective heat transfer coefficient for
periodic thermo-fluid flow in cell, 4., as defined in Kari-
mian and Straatman (2007) for constant wall-temperature
condition, is calculated for each simulation. Since the
pore-window diameter is selected as the microscopic
length-scale, the pore-window Nusselt number is calculated
as

h.Dy,

k k)
where k is the heat diffusion coefficient of the fluid. In
Fig. 11, the variation of the pore-window Nusselt number
with pore-level Peclet number, Peyw is shown for the results

of the simulations. The pore-level Peclet number is defined
as

Pew = Rew X Pr. (42)

Nuw =

(41)

In this plot, the data items are grouped in four curves of
constant porosity, regardless of the Prandtl number Pr,
which shows that the pore-window Nusselt number is a
function of the pore-level Peclet number:

Nuy = f(Pew, pore geometry). (43)

Moreover, each curve asymptotically approaches a con-
stant value. The asymptotic behavior of heat convection
can be discussed as follows: In the creeping flow regime
(see Fig. 12a), a thick boundary layer forms alongside the
walls, and the molecular diffusion is the dominant heat
transfer mechanism. As the Peclet number increases (by
increasing Reynolds number) the boundary layer thickness
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Fig. 11. Pore-window Nusselt number vs. pore-level Peclet number.

Fig. 12. Streamlines at a cross-section 45° from zx-symmetry plane for the
case of (a) Rep = 0.1 and (b) Rep =25, Grid 3.

decreases resulting in an increase in the temperature gradi-
ent normal to the walls and hence an increase in heat con-
duction. As the flow rate increases, a separation bubble
starts to form inside the opening in the flow field, down-
stream of the inflow pore window. The separation bubble
acts as an insulator and, therefore, a decrease in the slope
of Nu vs. Pe plot occurs (see Fig. 11). Since the flow circu-
lation in the separation bubble removes the heat from the
mainstream and releases it to the solid wall, or vice versa,
the dominant heat transfer mechanism in the bubble is
switched to heat convection by means of flow circulation.
The size of the separation bubble grows with increasing

flow rate until it reaches to its maximum size, occupying
the whole opening near the pore window normal to the
flow direction (see Fig. 12b.) From this point on the flow
structure will not vary significantly with flow rate resulting
in an asymptotic behavior in Nu vs. Pe plot.

As mentioned before, the accuracy of the Nusselt num-
ber calculated for low Peclet numbers is questionable.
Therefore, the convective heat transfer model proposed
herein is limited to the strong inertia thermo-fluid flow
regime with Pe>> 1.0 (the asymptotic zone in Fig. 11)
and it is assumed that

Nuw = f(pore geometry) for Pe>> 1. (44)

Fig. 13 shows the asymptotic value for each porosity. The
form of the dependency of the pore-window Nusselt num-
ber to the geometry is still unknown. The variation of the
porosity leads to the variation of the pore-window diame-
ter and the variation of the internal surface area. The pore-
window diameter is the characteristic length-scale at pore-
level and the internal surface area is the means for solid-to-
fluid heat transfer. Both of these parameters are already in-
cluded in the definition of the pore-window Nusselt num-
ber: the former is the length-scale on which the Nusselt
number is based and the latter is used in calculating the
cell-based convective heat transfer coefficient /.. However,
due to the non-linear nature of convective heat transfer, it
is expected that the dependency of the pore-window Nus-
selt number Nuyw to the porosity ¢ can be expressed in
the form of (see Egs. (20) and (3))

Nuw = a(3n —2)"(1 —y*)" for Pe>> 1. (45)
By a curve fitting process to the present computational
data, it is shown that
3101 - )

Nu
w (3’1 _ 2)()‘725

for Pe > 1. (46)

Therefore, from Eq. (3), we can also form

Nu,,
w
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Fig. 13. Pore-window Nusselt as a function of porosity.
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3.10
;/] J—
where Nup, is the pore-level Nusselt number based on D,
h.D
NMD = X P . (48)

Hence the characteristic length-scale in pore-level heat
transfer is the pore diameter D,. Also, for Pe>> 1.0, the
dependency of the convective heat transfer coefficient to
the flow is insignificant and it is only a function of the
geometry and can be expressed in a general form of

Nup = for Pe > 1, (49)

A
(3n—2)"
where parameters 4 and n can be calibrated using experi-
mental measurements.

6. Conclusion

A set of simulations of the pore-level thermo-fluid flow
in a spherical-void-phase porous media have been carried
out to better understand the hydraulic and thermal behav-
ior of the flow. A permeability model was developed for the
interconnected spherical-void geometry based on Carman—
Kozeny theory and an Ergun-like, non-linear extension
was added to the model. Using this analogy revealed that
three geometric parameters govern the hydraulic behavior
of the microscopic flow: pore-window diameter, porosity
and the cell ratio (the ratio of the cell size to the pore diam-
eter). Although the cell ratio is solely a function of the
porosity, due to the complexity of the function, it is not
included in the model and the model is developed as a func-
tion of the cell ratio. The difference between the proposed
modified Carman-Kozeny model for SVP foam with the
original one for packed beds of spherical particles can be
expressed mathematically based on the difference between
two geometries. The variation of the proposed Kozeny
constant with porosity is in agreement with others in liter-
ature. Moreover, a weak inertia flow region was recognized
with a quadratic pressure behavior in terms of pore-level
Reynolds number (or cubic in terms of velocity). The
results of the simulations for the weak inertia flow is in
agreement with the weak inertia theory of Mei and Auria-
ult (1991) and the results of Firdaouss et al. (1997). A com-
bination of a linear permeability model and a quadratic
Ergun-like extension is still recommended as a good engi-
neering approximation for both weak and strong inertia
flow. By using the concept of periodicity (Karimian and
Straatman, 2007), the pore-level Nusselt number for a cell
is calculated. An asymptotic behavior is observed for the
convective heat transfer coefficient as a function of Peclet
number. This behavior is discussed to be a result of the
development of a separation bubble in the flow field. The
pore-level Nusselt number is characterized using the pore
diameter as a length-scale. A heat transfer model is pro-
posed for strong inertia flow regime relating the pore-level

Nusselt number to the pore-structure geometry is also pro-
posed, subject to calibration with experimental data.
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